A particle swarm optimisation-based Grey prediction model for thermal error compensation on CNC machine tools
نویسندگان
چکیده
Thermal errors can have a significant effect on CNC machine tool accuracy. The thermal error compensation system has become a cost-effective method of improving machine tool accuracy in recent years. In the presented paper, the Grey relational analysis (GRA) was employed to obtain the similarity degrees between fixed temperature sensors and the thermal response of the CNC machine tool structure. Subsequently, a new Grey model with convolution integral GMC(1, N) is used to design a thermal prediction model. To improve the accuracy of the proposed model, the generation coefficients of GMC(1, N) are calibrated using an adaptive Particle Swarm Optimisation (PSO) algorithm. The results demonstrate good agreement between the experimental and predicted thermal error. Finally, the capabilities and the limitations of the model for thermal error compensation have been discussed.
منابع مشابه
A cuckoo search optimisation-based Grey prediction model for thermal error compensation on CNC machine tools
Purpose – The purpose of this paper is to produce an intelligent technique for modelling machine tool errors caused by the thermal distortion of Computer Numerical Control (CNC) machine tools. A new metaheuristic method, the cuckoo search (CS) algorithm, based on the life of a bird family is proposed to optimize the GMC(1, N) coefficients. It is then used to predict thermal error on a small ver...
متن کاملApplication of GNNMCI(1, N) to environmental thermal error modelling of CNC machine tools
Thermal errors are often quoted as being the largest contributor to inaccuracy of CNC machine tools, but they can be effectively reduced using error compensation. Success in obtaining a reliable and robust model depends heavily on the choice of system variables involved as well as the available input-output data pairs and the domain used for training purposes. In this paper, a new prediction mo...
متن کاملComparative study of ANN and ANFIS prediction models for thermal error compensation on CNC machine tools
Thermal errors can have significant effects on CNC machine tool accuracy. The errors usually come from thermal deformations of the machine elements created by heat sources within the machine structure or from ambient change. The performance of a thermal error compensation system inherently depends on the accuracy and robustness of the thermal error model. In this paper, Adaptive Neuro Fuzzy Inf...
متن کاملVariable-weight Combination Prediction of Thermal Error Modeling on CNC Machine Tools
Since the thermal error modeling of CNC machine tools has characters of small sample and discrete data, the variable-weight combined modeling method was presented by integrating time series analysis and least squares support vector machines. Taking minimum sum of error square of prediction model as the optimization criterion, optimal weights in different time were calculated. Using grey GM (1, ...
متن کاملA New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015